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Summary. -— The main rexults derived by E. WoLr and P, Romax, re-
lating to the propagation of second-order correlations in electromagnetic
fields are generalized to the case of a non-stationary field containing cur.
rents and charges, The baxie differentinl equations relating the correla.
tions are derived. They fall into two groups, one of which vontains oniy
differential equations of the first order, but invelves certain parameters
that seem ditlicult to he determined experimentally. When these quantities
are eliminated a second set of equations ix ohtained, Equations of this
set are of a higher order but they contain only the electric and the mag.
netie correlation tensors and a4 teaxor eharacterizing the corvelation in
the electrie currents,

1. -~ Introduction.

In several papers published in recent vears (1) o unitied formulation of
the theory of partial coherence and partial polarization was obtained, for sta-
tionary eleetromagnetie felds in vacuo. The chief mathematical tools in
this theory are eertain correlation tensors which deseribe the cross-correlation

(*) The research deseribed in thix paper war supported by the V.20 Air Foree under
contract monitared by the « Office of Aerospace Reseaveh s, of the Air Foree Oflice
of Seientifie Researeh,

(M K. Worr: Nuora Cimentn, 12, 884 (1954,

2y E. WoLg: Contribution in Proe. Symipoxiem on Astronom. Opliex (Amstendam,
1956y, p. 177,

M PP, Rosmax and K. Work: Nwuoro Crmento, $7. 462 (1950). We shall refer to
reference (*) an paper 1. Formulie from this paper will be denoted as (1L.3.11m) ete,

M ', Rovax and F. WoLr: Nuors Otmento, 170 477 (19600,
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EQUATIONS GOVERNING THE PROPAGATION OF 3ECOND-ORDER CORRELATIONS ETC. | 329}

functions of the electromagnetic field at any two points in the field. These
correlations tensors were found to be rigorously connected by a set of partial
linear differential equations. From these equations a number of conservation
laws were derived. Some applications of the theory were described in refe-
rence (*) and (%).

More recently RodMax (?) extended the theory to take into account the
presence of random charges and currents and he suggested possible application
of the theory to the study of propagation of electromagnetic flelds in plasmas.
Another possible application of the theory may well be in studies of the pro-
perties of the electromagnetic field generated by an optical maser. For the
purpoge of these and other applications (e.g. the analysin of transient pheno-
mena), it ix, however, desirable to extend the theory to electromagnetic flelds
that are not necessurily stationary. It is the purpose of the present paper to
derive the baiie differential equations relating to fields of this type.

In Section 2 the detinition of the basic correlation funetions is extended
to non-stationary electromagnetic fields containing charges and earrents, In
Nection 3 a xet of partial differential equations governing the propagation of
these quantities in vacuo is derived. These equations are ag in linear partial
ditfferential equations of the first order but they include certun quantities that
appear to be difieult to determine experimentally. These quantities are eli-
minated in Section 4 and one ix led to linear partial differential equations of
higher orders which, however, involve only the basic correlation tensors of
the theory.

2. - The defining equations.

Let Kz, ) and M (x. 1) (j  1.2.3) be the analytie signals (*) associated
with the Cartesian components of the clectric and magnetie field veetors at
a typical field point Prx)y at time 1. We define the field correlation tensors for
the non-stationary eaxe by the relations

Loz x,.1,.0) = "K=x.t+1) J:(x,, -1y,

KXy 2 Ty, 1) = (0 H x5, 1)),
(2.1) , Uok=1,2,3).
Galx x5, 1.1) = B, -t,) H iz, t+ 1),

B Xy Xy Ty 1) = M (Xt T B, t A1)

%) E. Wourr: Nuoro Cimento, 13, 1165 (1959).

%) G. B. Paruent and P Rovas: Nuoro Cimento, 15, 370 (1980),

7y I’ Rosvan: Nuoro Cimento, 20, 738 (1941).,

™) M. Bors and K. Waory: Principles of Opties (Lomton and New York), § 102,
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Here the sharp brackets denote time average, defined as follows:

(2.2) (Pt 1,) Gl 4 1,)) = ’lgx: 517, Fit +1,; TYG(t + 14; T)dle,
with
Ft, T) = F(t) ltj< T.

=0 {ti>T.

In this special case when the field is stationary, the quantities defined by
(2.1) each become functions of the difference 7=17,—17, only and the four
correlation tensors reduce to those introduced by Worr (1) and disxcussed fully
by him and RoMax (7).

As is easily seen from the definitions these [ .asors have the following sym-
metry relations

: ]
S (%), Ze0 71, T) = A"” (%20 2y, 120 1)
. *
K Zyy Xyy Tyy Ts) = H (X Xy Tay T
(2.3)

bt ]
Gir(%yy Xyy Tyy Ty) = ?f“. (%20 %44 T2y 7)) o

b/ *
A%y Xyy Ty Ty) = W,j (2 %1 Teo 1)) -
Further we detine o change eorrelation sealar by the relation
2.4) PULys Tay Ty Ty) 2 (0l L e YoMy DT,

where o(x,1) ix che analytie signal associnted with the reul change density.
Finally we introduce the eurrent corvelation tensor .# by the formula

S Wxt s 2 ) - .

(2.5) IulZi Xy Ty ) = i U 1) (R T E T,

where /; (j=1,2,3) is the analytie zignal associated with a typical Cartesian
componenis of the electric current veetor.

Obviously .# and .f have the following symmetry relations:

PRy, Xy Ty, Ty) = P (X Xy, T 1)
(2.6) .
";k(zlt X2, Ty Tz" = -”“(xzo X1y Tay Tl) .

In addition we introduce, for notational convenience, the auxiliary vor-

od
”
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relations
2, (X, Xy, Ty, To) = (K, (%, 14 1)) o*(xy, - 1,)),
Bi (%, X3y T1y Ty) = (H,(2,, t-+ 1) 0%(2y, 1 +13)),
Youl%yy sy Ty Ty) = {E; (%, ¢ +T|)i:(-’:y L4 1),
No(Zy, %20 1, 1) = (H, (3, L5 1) it (@, 1+ T)) .

The quantities .2, £, x,, 8,. y,» and p,, are generalizations to non-stationary
tields of similar quantities introdueed recently by RoMaxs ().

3. - First order differential equations for the correlations.

The Maxwell equations in the presence of rourcex may be written in the
form

1 o 14
(3.1) FM‘I':P"("I' ) -~ - ;'l Hi(x.1)=0,
. - | S iz .
(3.2 et iz, 1) — + 7, E(x,.1,) = - i(x. 1),
(3.3) T E (%, 1) = brolx,, 1), B
(3.4} Ao x 1) =0,

where ¢,, is the completely antisymmetrie unit tensor of Levi-Civita, ie. e,
ix 41 or — 1 according as the subseripts (j, &, I} are an even or an »dd per-
mutation of (1,2.3) and £, = 0 when two sutfices are equal.  We shall use
superseript 1 oor 2 acvording whether the operator acts on the eo-ordinates
of x,. or x,, i.e.

v
~1 ~1
o 2y L
Cay

(k=1,2,3).

il -~
L
"l!

e

If we multiply (3.3) by o%(x,, £+ 1,) and average over {, we obtain, if we
also set f, =t-1;

;: Bzt - r)otx - = b o(e, E - ) 0% (X (- Ty)S
If we uxe the notation introduced in the preceding seetion, this relation becomes

(3.5) AL R S AR I JE I N A AN

-
"
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Next we multiply (3.3) by I'J:(x,, t-+1,) and average over . This gives

the relation
{3.6a) a‘fu(‘u Xy Ty T) = 431:: (%ay %)y T1y Ta) ©

If we start from the complex conjugate of (3.3) with =, —x,, t, > 1,,
¢! — ¢, multiply the equation by K (x,, 1), set t, =t-i-7,, t, =14 1, and aver-
age over {, we ohtain

EKE,(my t+ 1) Eyl®e, 1+ 7)) = 42(Ei(x, 1+ 1) 0% (3, T+ 1))
ie.
(3.60) ;: a(Xyy Zsy Tyy Ty) == 432, (2, X2y Ty, ) .

Tie two eqs. (3.64) and (3.6b) are generalizations to » non-stationary field
containing currents and charges of eqs. (1. 3.13a) and (L. 3.13b) of RoMax
and Worr. These equations give the connection between 4, and x,. It ap-
pears that £, ix a measurable quantity. On the other hand z; can hardly
be measured. although it has @ definite physieal meaning, {.e. it reprevents
the correlation between the charge density and the electrie tield.

Further we obtain from (3.3) in « similar way, the following two equations:

~1 .
G Gulxys 25, 1), 1) = a0, (% 2y, T2y T1)

bt B3
’: G Xy Xy Ty ) == A (2, X0, Ty, T)

These equations cannot be considered as basie equations, sinee the quan-
tities g, and g} are again not measurable. However, if the field is free, these
equations turn our to be more meaningful.  In that case g, = g7 =0 and
the equations then represent divergence conditions on 7 and % and are gene-
ralizations of the simple divergence relations (1. 3.144) and (1. 3.1h) for the
stationary case.

From (3.4) we can readily obtain other divergence rslations:

(3.7m) B 2T ) =0,
{3.7h) DX, X T T = 0,
{3.8a) TLAH (2T 1) = 0,
(3.8b) LAy, 2y, Ty 1) = O,

These four equations have respectively the same form ax equ. (1 3.15q), (1. 3.158),

[
-
"
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(I. 3.6a) and (I. 3.16b). Thix is no because the starting eq. (3.4) from which
they are derived is the same as in the source free case.

Next we shall derive the correlation equation which relate the correlation
tensors &, H,e, Ny Y and S, These eiquations can be ebtained from (3.2).
Multiplying (3.2) by il(xy, t+1,) and using the same procedure of averaging
as hefore we obtain the formulae

- , 1 é
£, M (%, l‘{"f‘)':(’v 1)) — P ?}“ CE, (%, ‘+tl)i:(’:v t+1,)> =
Ty

i . .
= 2 (e ) B (1)),
i.e.
) . 1 ¢ iz
(3.9) F,u':’]h.(xu Xyo Tpo T3} — it Pl Xy Xy Tpa Ty} = “c‘-’u(xn Zyy T1o T}«
1

Thix is one of the required correlation equations but it seems bhetter not to

regard it as a basic eqnation, becanse it containg the quantities 5, and y,.

which appear to be diffienlt to measure, although they have a well defined
physieal meaning. This equation ix, however, nsefal for deriving correlation
equations among ¥, Frne B0s 4, and £, Thin will be done luter,

Next we maltiply (3.2) by Hi(x,, 1 - 1,) and set §-»t2 v, and 7.7 - Ffir,

and averaged over £ Thix leads to the relation

- 1 ) .
it Hisy b ) llnix,. 1 - 1) —~ - "'r Elx,  t -n) e, b o1y)" ==
)
& A .
= (b)) o2y -1y,

i .
. S Ve
(3. 100) Ear b A (2 X T Ty) = = o B (X Xy T Ty) e

reT,

b,
= " 'I-‘(xﬁi X, T 1)

Taking the complex conjugate of (32), changing 2, -2, 4, =/, and chang-
ing the indices (j. k. D) to (n,a,h) we find that

-

~ 4
Famlall3ix, 1) —-

. i,
Py e, ) = o IMERE AW

We multiply the above equation hy H(r 0), set £t 1, 8 =0 +vy and
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average over ¢t as before. Thiy leads to the formula

-

- . . . Y C Al N
Faa CCHY (e ) Hi(®y 1+ 1,)0 — ‘c ey ‘\1'4:(32. tto)H(x, t+1)) =
1

4
== _;.l <i:<-"31 t+u)H (x,, t+1,)>,

‘e

- 1 ¢ ~ £ 4
(3.10b) &, 203 M, (2y, Xys Ty Ta) — P Gra(Xyy X9y T Ty} = ra Nenl®ys Xy T1y Ta) -
Oy

(3.10a) and (3.10b) give relations among #,., ¥;. ana r];, and among £,
4. and Nia- Therefore, if #,, and %4, are known from experiment the
quantity 5., which cannot be meaxured directly can then be evaluated. When

the fielll is free these two equations reduce to

-

1 7
a1
EikrCp Ko (Zyo %30 1,0 7)) — P G (% Xy T3 1) = O
1

and

1 7
~2
Eop1 Co ¥ il Xyy Xy Ty Ty} — - ’(AT:

z’,,.,(x,. Xua Ty Ty) = O,
respectively. These two equations are generalizations to a non-stationary field
of the eqs. (L.3.124) and (1.3.12h).

Alvo from (3.2) the same procedure as before leads to the following equations:

oy~ 1 7  ,
(3.018) &, F 1 G (X 20 Ty 1) — P Ao (X X T Ty) - - Sl Xas Xy Tar Ty)
1

-

- | i
(A1) 4 RG22y Ty Ty) — i A al®y Xea Ty Ty) = " Pial®ys Xy Ty Ty)
3

With the help of these equations one can evaluate the quantities y:,_ and
»,, Trom the knowledge of &, 4. and %,.. In the case of a free field, the
richt-hand sides of the equations vanish and these equations are then gene-
rudizations to a non-stationary free field of eqs. (I.3.11a) and (L.3.11h).

The remaining correlation equations may be derived from eq. (3.1), which

ix the same as for the free field. Or- obtains

-

f -~
f;f. Gl Xy Xy Ty Ty) = 0,

N -

(3.12a) Ert 1 (s s Tyy T) E
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Making use of the symmetry properties (2.3), one readily finds from (3.12a)
that

- 17
(3.12b) Enslalnl®y, x:y 15, 7)) + P Gonl®yy Xy Ty Ty) =0,
s ]

One also obtaina from (3.1) the equations

- 17
(3.130) i 2B (2, Xy Ty, Ty) P Hou(®yy 23y Ty Ty) =B,
1
" e . ) B .
(3.13b) FurfeUul®ys X0, Ty T) + re Ko (® Xy 1, ) =0,
1

The above four equations apply to a flield whether or not it contains cur-
rents and charges. Equation (3.12a) gives simply the relation between o,
and Z,,. and (3.12b) gives the relation between &, and ¥,,, and so forth.
These equations are generalizations to a non-stationary field of the eqs. (1.3.9a),
(1.3.96), (1.3.10a) and (1.3.100).

4, ~ Higher order differential equations for the correlations.

The differential equations derived so far contain derivatives of order not
higher than the first. Some of the equations contain, however, the auxiliary
quantities 2,, g, v,., and y,,. It iv possible to eliminate these quantities com-
pletely and one is then lead to differential equations of higher order, which
appear to he more basic. These evuations will now be erived.

Substituting (3.6b) into (3.3) we arrive at the rsecornd order « divergence
equation s which gives the relation between 4, and 2:

(1.1} ;:;: Sz, 20, 1, 1) = 16332 %, 24, T, Ty) .

On multiplying (3.100) by £,,7} we obtain the equation

-

1 ¢ o~
=3 ~a ~1 .
Exifamlily KBy Xyo 10 T2) — ""FH'I L Pl Giu(Zye Xy, Ty07y) =
s

in -1 \
= - Eetf o linl®ye X907y T4},

and multiplying (3.115) by — (1/e}(¢/71,), we fnd that

1 ¢ 1 2 @
°r C p em - A —
— e kTN = G (X Xgy Ty, Ts) + £ n(Byy gy Tya Ty) ==
. nks *.PT, H( 1 2+ )0 2) C' FT[ af, H'( 1y LIRS AN
ix 7
== ?}: (X0 20 T Ty) o

u38
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"Yherefore, using (3.9), it follows that
9 YT 1 a1 z
(+.2) £,k180 0 Ci O3 K[ Xy Xy Tyy Ty) — ; kil C;“ G ia(®1y Xgy Tyy Ty) —
2
b ¢ 0
_ l:‘nu?:r G(®yy Xy T4 Ta) p é;—n 3—1; & inlxy, %y Ty, ) =

1672
= pre S in(®yy %5, 7y, T3)

If the field ix stationary, then relations of the following form may be used:

KF (2, ) (i 2y, t—1T) = {Fla, L+ T)G* (x5, 1)) .

We may then replace #/fr, — #/ét and ¢/P1, - — &/fr, since in this case wa

put t,=1, t,=1—17. Therefore eq. (4.2) becomes
¢ ~ 1 e 1 & 16m?

£ —tmiCh s G— 5 = " Fin
c T AN & ¢t

- , | S
' EsriEns (40 My + = Eiz1 08 m= Gy —
¢ ‘T
This iz just the equation derived by RodMax (7) for thie stationary case.
Further we can derive a correlation equation which econtains only & and .#.
This can be done by eliminating 7 from (3.18¢) and (3.12b}. We apply the

it
K%y, Xy, Ta 1) = 0.

operator (1/e)(7{71,) to eq. (3.13a) and obtain the relation
~1 ; 74
Eualh — == G® 2, T )+ L
€ 0Ty C rTy 0Ty
Substituting (3.12b) into the above equation, we find that
1

a1~z 4 -

Euifa o (h 38 (Xy, Xy Ty Ty) — 2 2y A K%y Xy T 1) = 0
el 01, 71,

(1.3)

It should be noted that this equation contains only é and ¥ tensors.

Also we ean eliminate % and % from (4.2). To do this we first change the
We then apply the ope-

~

indices in (3.12a) as follows: j—1, k —>a, | —b.
rator £,,0y and obtain the equation
-~
~ Gr(%, 2, T T) = 0.
i

-

a1 -2
f'jkl“'m»"k('a(r»u(xn X,, Ty, Ta) -+ 7. Fiwily

Utilizing the well-known identity
Eixtfran = 0ja0in— 0,504 )
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where & is the Kronecker symbol, we obtain the equation
151 a1a .
(4.4) OO0 Eunl(xy, 20,7y, T,) — QO a2y, %y Ty, Ty) +
1 ., 0 =~
i Che— G (B, Xy Ty, Ty) =0 .
P ikity 31. lu( 1y “¥2y 51y !)
In a -.milar way we obtain from (3.12b) the relation
» ot o
(4.5) CaCrd e (%), %y, 7Yy Ty) — D301, (%), %y, Ty, Ty) L
1 0
3
+ ;ensl?k a—t. e Xy Ty Tyy =0,

Applying the operators (1/e?)(#3/¢]) and (1/¢%)(71/21}) to the eqs. (4.6) and
{1.5), respectively, we have

(+4) _:afi*'E:;:';j’% '?n(xn Xy Ty Ty) =

= :. ;:: ?’:;:Jknfxu LITRIT T:)—c‘ ;:3 AnE (xy, 2, T, Ts),
(4.5) —:, Enti ?i‘: («2" Gz, Xg 1, 1y) =

= :n ;?;!: AR (X X T T,) — :, ;;:-:41"'5,.(11- X5, Ty T3) .

- ) . nind N
where 19 = 817 (i=1,2).

-~

Next we apply the operator {(1/e3)(7/7,)(7/71,) to (£.2). Thin gives

1 T s 1 ™ P =
(1.6) Eoiruan 57 53— OOy y=— F i€, o _
A A e N g ey T
1 M 01F T 1 /o P 1624
Farile a3 5~ I e = R .
o G G T T e e

4 e i Dang L2 ey
. jki R AT g T Ty T e AL
2 ne T, 1 [ T ot fT: PR Rie 11 pr ?T’ m
1 60 . 1 ¢ 1 ¢ 72 161 &
-+ ‘-“":(:J,k— L LI Y R Y S N in -
et i1} L TN SR ¢t fr,01,
For the stationary case equation (£.7) reduces to
;’ “1 2 ~1 1~1
R l’m"n sCpla Wi — O30 8+ CL008, — Fali &y -
1 & 16n
ag g 7
-+ k'k‘fm ‘;Tr'iJl'-"' 2 -’in =0)
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as can be seen by setting ¢/¢t,=¢/étr and ¢/¢r,=—0/¢r in (4.7). It is of
interest to note that the term appearing under the differentiation sign ¢2/0t?
{i.e. tha term in the large bracket) is identically equal to zero in the analysis
of Roman relating to the stationary case.

Further we can eliminate J# from eq. (4.7) with the help of eq. {1.3). The
resuitant equation is

(4.3)  G1EIAi s, — AV A8, — AVEIRE, + AV AL, +

1 0 1 n 1 & 1 o

+ =25 006 — = s AVt a5 Gl — .z AV S,
el Rl d T = B i er 812 A0+
La B, 16w |
sl ovd " e dmer, M

This equation contains only the electric correlation tensor £ and the current
correlation tensor .

If the current correlation tensor f is given, the eq. (4.8) represents 9 equa-
tions for the 9 components of &. These equations, with the subsidiary con-
dition (4.1) make it in principle possible to determine & from the knowledge
of #. Once & i3 known, the magnetic correlation tenscr .# may be determined
irom eqs. (+.3) subject to the « divergence relations» (3.3a,b). Finally one
may determine the correlation tensors % and 7 by substituting for & into
eqs. (3.12a, b) or by substituting for ¥ into (3.13a, b).

L 2

The author wishes to express his sincere thanks to Professor EMiL WoLr,
who suggested this problem, for continued encouragement.

RIASSUNTO (9

Ri generalizzano al caso di un camipo non stazionario contenente correnii e cariche,
i principaii risultati derivati da E. Worr e P. Roway, relativi alla propagazione di
correlazioni di secondo ordine nei campi elettromaymetici. 8i derivano le egnazioni
differenziali fondamentali relative alle correlazioni. Queste equazioni si dividono in
dne gruppi. uno der quali contiene solo equazioni lifferenziali del primo ordine. ma
comporta aleuni parametri diflicili da determinare sperimentalmente. Se si eliminano
queste qnantitd si ottiene un secondo gruppo di equazioni, che sono di ordine pin elevato,

ma contengono =olo i tensori di correlazione elettrici e magnetici e un tensore che’

caratterizza la correlazione nelle correnti elettriche,

(") Traduzione a ecura della ledazione.
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